В тех практических задачах, где возникает потребность в создании разряжения в пределах от 10-3 до 10-10 Торр, обычно используется один из трех типов насосов: масляный диффузионный насос, турбомолекулярные насосы и крионасосы. Из всех перечисленных типов насосов крионасосы наиболее просты в эксплуатации, обеспечивают наиболее быструю откачку и при этом абсолютно не загрязняют откачиваемый объем. Проблема прямой зависимости давления паров от температуры при применении крионасосов решается очень просто и элегантно. Дело в том, что крионасосы не перемещают молекулы газа, а замораживают их. В связи с этим у крионасосов отсутствуют какие-либо подвижные части или жидкие среды, контактирующие непосредственно с вакуумом из откачиваемого объема. Это обстоятельство полностью исключает вероятность загрязнения рабочего объема в процессе откачки. Крионасосам, в процессе эксплуатации, требуется минимальное техническое обслуживание. Следует отметить, что надежная индиевая пайка, применяемая для крепления криопанелей в насосах, дает возможность откачивать, в том числе, и агрессивные газы, такие, например, как Cl2, HCl. Все части крионасосов, контактирующие с откачиваемым газом покрыты стойким медно-никелевым сплавом. В том случае, если требуется исполнение с повышенной химстойкостью, возможно нанесение покрытия из тефлона. Важным преимуществом криогенных откачных систем является более высокие по сравнению с другими типами насосов скорости откачки при гораздо меньших габаритах.
Обычно, откачные характеристики криогенных вакуумных насосов сравниваются на основе скорости откачки по воздуху. Это связано с тем, что откачные характеристики стандартных насосов синхронно изменяются в зависимости от типа газа. У крионасосов, однако, скорости откачки по различным газам сильно отличаются. Так, например, в большинстве случаев водяные пары являются основной газовой нагрузкой, и скорость откачки паров воды является определяющим фактором при оценке общего времени откачки рабочего объема. Скорость откачки паров воды стандартного крионасоса с фланцем DN200 превышает 4000 л/с. Стандартным насосам для достижения такой производительности требуются дорогостоящие азотные ловушки.
Также крионасос может монтироваться непосредственно на рабочий объем, что очень важно, в таких промышленных процессах, как, например, процесс металлизации. Это возможность позволяет достигать максимально возможных для данного насоса скоростей откачки по кислороду, водороду, азоту и другим загрязняющим газам, что, в свою очередь, улучшает качество покрытия.
Существенно, что крионасосы являются самыми «чистыми» из всего семейства высоковакуумных насосов, применяющихся в настоящий момент. В крионасосах отсутствуют подвижные части, рабочие жидкости или другие рабочие элементы, способные загрязнить откачиваемый объем, что полностью исключает попадание каких-либо загрязнений в вакууммируемый объем во время откачки.
Кроме того, крионасосы способны запускаться и самостоятельно производить дальнейшую откачку с так называемого давления запуска, обычно 0,5 Торр или выше, достаточного, чтобы полностью устранить самый главный источник загрязнения - обратный ток масла из форвакуумного насоса, создающего предварительное разряжение. Характерное значение запуска крионасоса измеряется в Торр*л и определяет то начальное давление, с которого запускается крионасос, принимающий с этого момента всю газовую нагрузку на себя, в зависимости от величины откачиваемого объема. При давлении, превышающим давление запуска, в форвакуумном насосе предварительного разряжения сохраняется вязкостное течение откачиваемого газа, которое удерживает пары масла внутри насоса предварительного разряжения. Таким образом, крионасосы не только обеспечивают сверхчистый вакуум, но также избавляют пользователя от трудоемкой очистки рабочего объема от паров масла, попадающих во время предварительной откачки.
Несмотря на то, что стоимость крионасосов находится между стоимостью диффузионных и турбонасосов с аналогичными откачными характеристиками, очень невысокая стоимость технического обслуживания крионасосов в процессе эксплуатации ставит их в ряд наиболее экономичных, рассчитанных на длительную эксплуатацию, высоковакуумных насосов.
На первый взгляд может оказаться, что масляный диффузионный насос является недорогой альтернативой крионасосу. На самом деле это не совсем так. Дело в том, что диффузионному насосу для достижения высокой производительности требуются азотные ловушки, регулировки уровней, дьюары и другое дополнительное техническое оборудование, затраты на которое быстро увеличат на тысячи долларов стоимость откачной системы на основе такого насоса. Кроме этого, эксплуатационные расходы на жидкий азот и электричество в дальнейшем сделают такую откачную систему много дороже криогенной.
Турбомолекулярным насосам не требуются дорогостоящее дополнительное техническое оборудование и ловушки, но и их стоимость при этом оказывается существенно больше, чем крионасосов с аналогичными откачными характеристиками.
Таким образом, крионасосы являются оптимальным решением с точки зрения создания не загрязняющей рабочий объем откачной системы с минимальной стоимостью и максимальной производительностью.
Какой бы тип насоса Вы не использовали, принцип создания вакуума не меняется. Вакуум создается путем удаления газа молекула за молекулой из герметично закрытого рабочего объема. В то время как стандартные методы откачки продавливают молекулы через насос, крионасосы вымораживают газы до твердого состояния, уменьшая тем самым давление паров до тех пор, пока не будет создан высокий вакуум.
Для охлаждения специальных встроенных криопанелей до 10К и 80К, на которых собственно и происходит осаждение молекул газа, в крионасосе используется система охлаждения замкнутого цикла с гелием в качестве рабочего газа. Молекулы откачиваемого газа, хаотически передвигаясь, контактируют с криопанелями и конденсируются или поглощаются на них.
При работе крионасоса гелий, находящийся при комнатной температуре и высоком давлении, нагнетается специальным удаленным гелиевым компрессором в крионасос на охлажденную головку поршня, которая термически связана с двумя рядами конденсационных решеток.
Поступающий на головку поршня под давлением гелий затем расширяется и охлаждает решетки. Внешний ряд решеток охлаждается до 80К и используется для конденсации паров воды, которые обычно являются основной газовой нагрузкой. Внутренний ряд конденсационных решеток охлаждается до температуры 15К и предназначен для основной части оставшихся газов. Все конденсирующиеся газы переходят в твердое состояние с давлением паров менее 10-12 Торр. Неконденсируемые газы, такие как гелий, водород и неон одновременно адсорбируется слоем из капсулированного активированного (древесного) угля, охлажденного до 15 К.
По существу крионасос состоит из трех независимых насосов или решеток, каждый из которых откачивает определенные типы газов с различными скоростями. При этом скорость откачки напрямую зависит от конструкции решетки.
В большинстве практических приложений передняя решетка испытывает колоссальную нагрузку. Эта решетка должна удалять водяные пары, которые создают основную газовую нагрузку при откачке рабочего объема. При этом внешняя решетка должна обеспечивать максимально высокую проводимость, чтобы остальные газы могли свободно поступать на внутренние решетки. Как видно из вида разреза на рисунке, внешняя решетка, поддерживаемая при температуре 80К, представляет собой несколько больших конденсирующих поверхностей для паров воды, свободно пропускающих остальные газы к внутренним решеткам. В результате скорость откачки воздуха крионасосом во много раз превышает скорость откачки другими насосами. То же самое относится к скоростям откачки по другим газам.
Стандартные, так называемые пропускные, высоковакуумные насосы сбрасывают откачиваемый воздух в форвакуумный насос предварительного разряжения и, в силу этого, начинают работать с определенного давления. Крионасосы начинают работать с того момента, когда удельная масса газа, находящегося в откачиваемом объеме достигает определенной величины.
Таким образом, давление запуска определяется величиной откачиваемого объема, а характерное значение запуска насоса выражается в Торр*литр.
Для того чтобы сравнить напрямую давление запуска крионасоса с давлением запуска любого другого насоса, необходимо знать размер откачиваемого объема. Зная объем, нужно просто разделить характерное значение запуска данного крионасоса, выраженное в Торр*л на рабочий объем в литрах.
Поскольку крионасосы обычно откачивают конденсируемые газы до давления паров менее 10-12 Торр, предельно создаваемый вакуум определяется исключительно скоростью откачки и газовой нагрузкой. Крионасосы в которых используются уплотнения из эластомеров могут создавать разряжение ниже 10-7 Торр, а при использовании металлических уплотнений - ниже 5*10-10Торр.
Так как крионасосы захватывают молекулы, а не продавливают их через себя, им требуется периодическая регенерация или «разморозка» для того, чтобы освободиться от накопившихся газов. В подавляющем большинстве практических применений крионасоса короткий цикл регенерации никоим образом не сокращает производственное время работы насоса. Это объясняется тем, что насос можно выключить непосредственно перед концом рабочего дня, перед выходными или во время регулярного планового техобслуживания системы, давая возможность спокойно провести регенерацию. Для большего удобства быстрый цикл регенерации может проходить автоматически, восстанавливая тем самым работоспособность насоса без дополнительного обслуживания.
Чистка нагретым газом также может существенно сократить время регенерации.
В том случае, если произойдет сбой в электропитании, в крионасосе в течение примерно 10 минут будет поддерживаться рабочая температура. При этом крионасос будет не только поддерживать вакуум, но и продолжать интенсивно работать. После включения электропитания крионасос автоматически запустится.
Таким образом, кратковременные сбои в питании вообще не смогут повлиять на работу откачной системы.
Модель | М125/250 | М400 | М600 | M700 |
Тип охлаждения: | воздушное или водяное | воздушное или водяное | воздушное или водяное | воздушное или водяное |
Питание | 50 Гц, 220 В | 50 Гц, 380 В, трехфазное | 50 Гц, 380 В, трехфазное | 50 Гц, 380 В, трехфазное |
М125/250 | М400 | М600 | M700 | |
Cryo-Plex 8 CTI Cryo Torr 8 CTI On Board 8 | 1 | 2 | 3 | 4 |
Cryo-Plex 8 Low Profile CTI Cryo Torr 8F CTI On Board 8F | 1 | 2 | 3 | 4 |
Cryo-Plex 10 CTI Cryo Torr 10 CTI On Board 10 | 1 | 2 | 3 | |
Cryo-Plex 16 CTI Cryo Torr 400 CTI On Board 400 | 1 | 1-2 |
Модели крионасосов | Cryo-Plex 8 | Cryo-Plex 8LP | Cryo-Plex 10 | Cryo-Plex 16 |
Скорость откачки (л/с): | ||||
По парам воды | 4000 | 4000 | 9000 | 16000 |
По воздуху | 1500 | 1500 | 3000 | 5000 |
По водороду | 2500 | 2200 | 5000 | 5000 |
По аргону | 1200 | 1200 | 2500 | 4200 |
Производительность при 5x10-6 Torr (станд. л/мин) | ||||
По водороду | 18 | 12 | 24 | 15 |
По аргону | 1000 | 1000 | 2000 | 2500 |
Максимальная газовая нагрузка | ||||
По аргону (станд. л/мин) | 700 | 700 | 1,500 | 500 |
Время охлаждения | 90 мин | 90 мин | 60 мин | 150 мин |
Габариты: | ||||
Высота (мм) | 526 | 179 | 607 | 610 |
Масса (кг) | 21 | 20 | 39 | 72 |
Входной фланец | ANSI/ISO/CF DN200 | ANSI/ISO/CF DN200 | ANSI/ISO/CF DN320 | ISO/CVC DN400 |